

pubs.acs.org/jmc

Discovery of the Novel Potent and Selective FLT3 Inhibitor 1-{5-[7-(3-Morpholinopropoxy)quinazolin-4-ylthio]-[1,3,4]thiadiazol-2-yl}-3-p-tolylurea and Its Anti-Acute Myeloid Leukemia (AML) Activities in Vitro and in Vivo

Wei-Wei Li,^{†,‡,||} Xiao-Yan Wang,^{†,§,||} Ren-Lin Zheng,^{†,||} Heng-Xiu Yan,^{†,||} Zhi-Xing Cao,^{†,||} Lei Zhong,[†] Ze-Rong Wang,[†] Pan Ji,[†] Ling-Ling Yang,[†] Li-Jiao Wang,[†] Yong Xu,[†] Jing-Jing Liu,[†] Jiao Yang,[†] Chun-Hui Zhang,[†] Shuang Ma,[†] Shan Feng,[†] Qi-Zheng Sun,[†] Yu-Quan Wei,[†] and Sheng-Yong Yang*,[†]

Supporting Information

ABSTRACT: Structure—activity relationship (SAR) studies of 2-(quinazolin-4-ylthio)thiazole derivatives, which are for optimizing the *in vitro* and *in vivo* antiacute myeloid leukemia (AML) activity of a previously identified FLT3 inhibitor 2-(6,7-dimethoxyquinazolin-4-ylthio)thiazole (1), are described. SAR studies centering around the head (thiazole) and tails (6-and 7-positions) of the quinazoline moiety of 1 led to the discovery of a series of compounds that exhibited significantly

increased potency against FLT3-driven AML MV4-11 cells. Preliminary *in vivo* assays were carried out on three highly active compounds, whose results showed that 1-{5-[7-(3-morpholinopropoxy)quinazolin-4-ylthio]-[1,3,4]thiadiazol-2-yl}-3-p-tolylurea (20c) had the highest *in vivo* activity. Further *in vitro* and *in vivo* anti-AML studies were then performed on 20c; in an MV4-11 xenograft mouse model, a once-daily dose of 20c at 100 mg/kg for 18 days led to complete tumor regression without obvious toxicity. Western blot and immunohistochemical analysis were carried out to illustrate the mechanism of action of 20c.

INTRODUCTION

FMS-like tyrosine kinase 3 (FLT3), a member of the class III receptor tyrosine kinase family, has been demonstrated to play an important role in the proliferation, differentiation, and apoptosis of hematopoietic cells. 1-3 Typically, FLT3 is activated upon the binding of the FLT3 ligand, which subsequently activates multiple downstream signaling pathways, including signal transducer and activator of transcription 5 (STAT5), Ras/mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase (PI3K)/AKT pathways. Activating mutations in FLT3 kinase are found in up to 1/3 of acute myeloid leukemia (AML) cases. 4,5 The most prevalent activating mutation is "internal tandem duplications" (ITD) in the juxtamembrane domain that leads to constitutive, ligandindependent activation of the kinase. The prognosis for AML patients with FLT3-ITD mutations is significantly worse than that for patients with wt-FLT3 (wild-type FLT3) when treated with standard therapy.^{6–8} In addition, activating point mutations in the kinase activation loop of FLT3 are found in another subset of AML patients, 6,9-11 which are also associated with a poor prognosis for overall survival. Thus, FLT3 has been considered as a potential molecular target in the treatment of

Because of the therapeutic values in AML, the discovery of FLT3 inhibitors has increasingly attracted much attention in recent years. To date, several FLT3 inhibitors including SU-5416,¹² SU-11248,¹³ CHIR-258,¹⁴ PKC-412,¹⁵ CEP-701,¹⁶ MLN-518, 17 BAY-43-9006, 18 KW-2449, 19 and AC220²⁰ have been advanced to clinical trials. However, except for very few of them, such as AC220, the clinical efficacy of most of these FLT3 inhibitors in patients with AML seems unimpressive, mainly because of their potency and/or adverse events that stem from their poor target selectivity. A survey analysis of FLT3 inhibitors that are currently in clinical trials made by us indicated that most of these inhibitors were not initially screened for sensitivity and selectivity against the FLT3 kinase but found an extra inhibitory potency against FLT3 in addition to the targeting of their designated kinases (see Table S1 in Supporting Information).^{21–23} Therefore, the discovery and development of the next generation of novel FLT3 inhibitors with higher potency and better selectivity are strongly demanded at the present time.

Received: January 11, 2012 Published: March 27, 2012

[†]State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan 610041, China

[‡]College of Chemical Engineering, Sichuan University, Sichuan 610041, China

[§]West China School of Pharmacy, Sichuan University, Sichuan 610041, China

As a part of the efforts in discovering more potent and selective FLT3 inhibitors for the treatment of AML, we recently found a new lead compound, namely, 2-(6,7-dimethoxyquinazolin-4-ylthio)thiazole (1), with the aid of a restricted de novo design strategy proposed by us.²⁴ Compound 1 has a considerable inhibitory potency against FLT3 kinase with a half maximal inhibitory concentration (IC₅₀) of 0.007 μ M. In addition, compound 1 also displayed a good selectivity for FLT3 against a panel of selected human kinases (see Table S2 in Supporting Information). Unfortunately, 1 showed poor antitumor activities in vitro and in vivo in models of FLT3driven AML; the IC₅₀ value against the human AML cell line MV4-11, which is a typical FLT3-ITD-expressing and a FLT3driven AML cell line, is 1.14 μ M, and the tumor inhibitory rate is less than 50% in its maximum dose in an MV4-11 xenograft model. The purpose here is to carry out a structural modification to optimize the in vitro and in vivo anti-AML activity of 1. A series of novel 2-(quinazolin-4-ylthio)thiazole derivatives were synthesized and tested for their in vitro anti-AML activity. The most potent derivatives were then subjected to an in vivo assay in a mouse xenograft model of AML. Finally, a drug candidate, 20c, which shows considerable in vitro and in vivo efficacy in models of FLT3-driven AML, was identified. In this account, we report the chemical synthesis, and the structure-activity relationship (SAR) of these novel series of compounds as well as in vitro and in vivo anti-AML activities of 20c.

■ CHEMISTRY

As depicted in Scheme 1, compounds 1, 1a-1d, which have identical side chains at the C-6 and C-7 positions of the

Scheme 1a

"Reagents and conditions: (a) thiazole-2-thiol, [1,3,4]thiadiazole-2-thiol, or 4-methylthiazole-2-thiol, K_2CO_3 , 2-butanone, 80 °C, 2–4 h.

quinazoline, were prepared by treatment of the commercially available 4-chloro-6,7-dimethoxyquinazoline (2) or 4-chloro-6,7- bis(2-methoxyethoxy)quinazoline (3) with thiazole-2-thiol or its analogues ([1,3,4]thiadiazole-2-thiol and 4-methylthiazole-2-thiol).

Synthetic routes of 2-(quinazolin-4-ylthio)thiazole derivatives with nonidentical 6- and 7-position side chains are illustrated in Schemes 2 and 3. The production of 6-alkyloxy-7-methyoxyquinazoline analogues 8a—e was started from the reaction of commercially available 7-methoxy-4-oxo-3,4-dihydroquinazolin-6-yl acetate (4) with phosphorus oxychloride in

the presence of N,N-diethylaniline, which gave 4-chloro-7-methoxyquinazolin-6-yl acetate (5). Substitution of 4-chloride in 5 by thiazole-2-thiol in basic conditions afforded intermediate 7-methoxy-4-(thiazol-2-ylthio)quinazolin-6-yl acetate (6). Then intermediate 6 was cleanly hydrolyzed by $NH_3\cdot H_2O$ in methanol to obtain 7-methoxy-4-(thiazol-2-ylthio)quinazolin-6-ol (7), which was alkylated with various chloralkanes in the presence of K_2CO_3 to provide 6-alkyloxy-7-methyoxy analogues 8a-e. The synthesis of 6-methoxy-7-alkyloxy analogues 13a-d (Scheme 3) was commenced with commercially available 6-methoxy-4-oxo-3,4- dihydroquinazolin-7-yl acetate (9) using conditions similar to those for the preparation of 8a-e to afford the desired compounds.

The synthesis of analogues 15a—o with substitutive groups in the 4- and 5-positions of the thiazole ring is accomplished in a two-step process outlined in Scheme 4. Commercially available 2 and 3 were reacted with 2-(2-mercapto-4-methylthiazol-5-yl)acetic acid or 2-(2-mercaptothiazol-4-yl)acetic acid at reflux under basic conditions in butanone overnight to afford intermediates 4-substitutive-quinazolines 14a, 14b, and 14c. Then, an amidation reaction of intermediates 14a, 14b, and 14c with varieties of substitutive anilines was carried out in the presence of 1-hydroxybenzotriazole, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, and *N,N*-diisopropylethylamine at reflux for 12–24 h in CH₂Cl₂ to provide the compounds shown in Table 2.

Finally, we synthesized a series of the 2-(quinazolin-4ylthio)-[1,3,4]thiadiazole analogues 17a-h and 20a-e with the original thiazole ring replaced by the thiadiazole ring (see Schemes 5 and 6). The intermediate 16a was achieved by reaction of 5-amino-[1,3,4]thiadiazole-2-thiol with acetic anhydride under reflux utilizing the synthetic method as described in ref 25. The intermediate 16b was synthesized by an amidation reaction of 5-amino-[1,3,4]thiadiazole-2-thiol with acrylyl chloride in the presence of organic base using the synthetic procedure as described in ref 26. The intermediates 16c-i were achieved by the reaction of 5amino-[1,3,4]thiadiazole-2-thiol with substituent phenyl isocyanates under reflux in an appropriate solvent overnight using the methods described in refs 27 and 28. Then, intermediates 16a-h were reacted with commercially available 3 in the presence of K₂CO₃ at 100 °C in N,N-dimethylformamide overnight to provide the 6,7-bis(2-methoxyethoxy) quinazoline analogues 17a-h (see Scheme 5). The synthesis of 6-H-7-(3morpholinopropoxy)quinazoline analogues 20a-e was achieved via the intermediate 19, which was synthesized starting from commercially available 7-fluoro-3H-quinazolin-4one (18) (see Scheme 6). The fluoro group of 7-fluoro-3Hquinazolin-4-one was displaced with the anion of 3morpholinopropan-1-ol at 100 °C in N,N-dimethylformamide overnight to give intermediate quinazolin-4-one (19). The intermediate 19 was then chlorinated by phosphorus oxychloride in the presence of N,N-diethylaniline followed by substitution with the intermediates 16b, c, g, f, and i using the same conditions as those for the preparation of 17 described in Scheme 5 to afford the final products 20a-e.

■ RESULTS AND DISCUSSION

Since our intention here is to optimize the functional activities of compound 1 both *in vitro* and *in vivo*, cell-based assays will be used to evaluate the bioactivity of synthesized compounds in the SAR studies.^{29,30} Two cell lines including FLT3-driven MV4-11 and FLT3-independent HCT116 were chosen here;

Scheme 2^a

"Reagents and conditions: (a) phosphorus oxychloride, toluene, N,N-diethylaniline, reflux, 3 h; (b) thiazole-2-thiol, K₂CO₃, 2-butanone, 80 °C, 2-4 h; (c) NH₃·H₂O, MeOH, rt, 5 h; (d) alkyl halides, K₂CO₃, 2-butanone, 85 °C, 6 h.

Scheme 3^a

"Reagents and conditions: (a) phosphorus oxychloride, chloroform, E_5N , reflux, overnight; (b) thiazole-2-thiol, K_2CO_3 , 2-butanone, 80 °C, 4 h; (c) $NH_3\cdot H_2O$, MeOH, rt, 5 h; (d) alkyl halides, K_2CO_3 , 2-butanone, 85 °C, 6 h.

the involvement of HCT116 is for ruling out activity due to non-FLT3 mediated effects ("off target" or cellular toxic effects). Compounds are likely better FLT3 inhibitors if they have high potency against MV4-11 cells but low or no activity against HCT116. It should be pointed out from the start that the SAR obtained from such cell-based assays potentially report a combination of intrinsic activity of compounds against the kinase target modulated by the ability of compounds to permeate the cell wall during the assay. The enzymatic assays were also performed but just on compounds with higher potency at the cellular level. The most active compounds in both enzymatic and cellular levels will be selected for further *in vivo* experiments to evaluate their anti-AML activity.

Modifications of 6- and 7-Positions of Quinazoline. As previously indicated, ²⁴ the 6- and 7-substituents of the quinazoline ring in 1 extend toward the solvent. The modifications of these positions were thus expected to help to improve the absorption ability of the cells. ^{29–32} Our attempts for the modifications of 6- and 7-substituents include increasing the chain length and varying the polarity of the tail. Various derivatives of 1 together with their bioactivities are presented in Table 1. Obviously, the modifications of 6- and 7-substituents of the quinazoline ring in 1 did not bring an increase in inhibitory activities against both MV4-11 and HCT116 cells. We thus started to modify the thiazole head.

Substitutions of 4- and 5-Positions of Thiazole. The modification toward the thiazole head was initiated to substitute the 4- and 5-positions of thiazole with different groups. At first, a single methyl group was introduced to the 4position of thiazole. The resulting compound 1a showed a similar antiproliferative activity against MV4-11 cells and no activity against HCT116 (unless it is necessary, we shall, later on, not mention the activity against HCT116 if there is no activity). We next explored the SAR of 5-position of thiazole; the methyl group was kept at the 4-position of thiazole due to the synthetic accessibility. The different substituents on the 5position of thiazole (see 15a-15e, Table 2) have considerable influence on the antiproliferative activity against MV4-11. The most active compound 15c, in which the 5-position substituent is N-[3-(trifluoromethyl)phenyl]propionamide, has an IC₅₀ value of 0.02 μ M against MV4-11. The cellular activity increases more than 50 times relative to that of compound 1. We then replaced the methoxy groups at the 6- and 7-positions of the quinazoline ring with longer methoxyethoxy groups, leading to compounds 15f-15k. The bioactivities of the series of compounds were not improved, which is consistent with the above result that the modifications of 6- and 7-substituents of the quinazoline ring did not bring an increase in bioactivity. In the series of compounds, the most active compounds 15g (IC₅₀: 0.025 μ M) and 15h (IC₅₀: 0.027 μ M) again correspond to the 5-position substitution of *N*-[3-(trifluoromethyl)phenyl]-

Scheme 4^a

"Reagents and conditions: (a) 2-(2-mercapto-4-methylthiazol-5-yl)acetic acid or 2-(2-mercaptothiazol-4-yl)acetic acid, 2-butanone, K₂CO₃, reflux, overnight; (b) anilines or amines, HOBT, EDCI, DIEA, CH₂Cl₂, reflux, 12–24 h.

Scheme 5^a

$$\begin{array}{c} \text{CI} \\ \text{N-N} \\ \text{N} \\$$

^aReagents and conditions: (a) N,N-dimethylformamide, K₂CO₃, 100 °C, overnight.

propionamide (15g) and its isomer *N*-[4-(trifluoromethyl)-phenyl]propionamide (15h). Lastly, in order to explore the substitution effect of 4-position of thiazole, we synthesized compounds 15l-15o that contain different substituents at the 4-position of thiazole. The bioactivity of 15l-15o at the cellular level is clearly decreased relative to those of their counterparts 15f-15i (see Table 2). From here, we can conclude that a bulkier substituent on the 5-position of thiazole is of benefit to increasing the bioactivity against MV4-11.

Replacement of Thiazole with Thiadiazole. In order to further improve the potency, we replaced the thiazole ring with the thiadizole ring based on the bioisosterism. The first compound (1c) obtained contains a thiadizole head and two methyoxy groups at the 6- and 7-positions of quinazoline. Compound 1c has FLT3 kinase inhibitory potency (IC₅₀ = 0.009 μ M) very similar to that of 1. The antiproliferative activity (IC₅₀) of 1c against MV4-11 is 1.20 μ M, which is also similar to that of 1. We then replaced methyoxy groups at the 6- and 7-positions of quinazoline with methoxyethoxy groups.

Scheme 6^a

"Reagents and conditions: (a) 3-morpholinopropan-1-ol, NaH (60%), N,N-dimethylformamide, 100 °C, overnight; (b) (i) phosphorus oxychloride, N,N-diethylaniline, reflux, 3 h; (ii) 16, N,N-dimethylformamide, K₂CO₃, 100 °C, overnight.

Table 1. 2-(Quinazolin-4-ylthio)thiazole Derivatives with Different Substituents at the 6- and 7-Positions of Quinazoline Together with Their Antiviability Activity against FLT3-ITD-Expressing MV4-11 Cells and FLT3-Independent HCT116 Cells

C d	R_1	D	MV4-11 ^a	HCT116
Cmpd.		R_2	$(IC_{50}, \mu M)$	$(IC_{50}, \mu M)$
1	-CH ₃	-CH ₃	1.14±0.24	> 10
8a		-CH ₃	1.61±0.71	> 10
8b	~N_O	-CH ₃	2.95±0.85	> 10
8c		-CH ₃	1.24±0.33	> 10
8d	~_N(-CH ₃	1.13±0.12	> 10
8e	~~N_O	-CH ₃	1.02±0.02	> 10
13a	-CH ₃	N	1.50±0.016	> 10
13b	-CH ₃	~NC0	3.00±0.78	> 10
13c	-CH ₃	N	1.60±0.62	> 10
13d	-CH ₃	~~NO	1.15±0.13	> 10
1b	-CH ₂ CH ₂ OCH ₃	-CH ₂ CH ₂ OCH ₃	1.40±0.23	> 10

^aEach compound was tested in triplicate; the data are presented as the mean \pm SD.

The resulting compound 1d has almost the same bioactivity as 1c, which is again consistent with previous observations. We next optimized the thiadiazole head by replacing the 5-position with different substituents containing an amide or urea. We obtained a series of compounds 17a-h, of which, 17f that contains 3-ethynylphenylurea is the most active compound (IC₅₀ = 0.005 μ M). In order to further optimize the physicochemical properties, we introduced the polar group 4-(3-methoxypropyl) morpholine at the 7-position of quinazoline, which led to 20a-e (see Table 3). Obviously, the introduction of a polar group considerably improves the bioactivity at the cellular level. Of special note are 20c and 20e, whose IC₅₀ values against MV4-11 are 0.006 μ M and 0.0003 μ M, respectively (the kinase inhibitory potency against FLT3 is 0.01 μ M for 20c and 0.006 μ M for 20e, showing the consistency between cellular and enzymatic activities).

Kinase Inhibition Profile of 20c. The chemical modifications toward compound 1 resulted in three compounds

(17f, 20c, and 20e), which potently inhibited the proliferation of AML MV4-11 cells with IC $_{50}$ values less than 0.01 μM but displayed very weak or no inhibitory activity against HCT116, implying that these compounds could possibly have a potential value in the treatment of AML. Thus, the three compounds were selected to carry out preliminary in vivo anti-AML experiments using the MV4-11 tumor xenograft model. Compound 20c displayed significant anti-AML potency (see Figure 2a), while 17f and 20e just showed very weak tumor inhibitory activity (the tumor inhibition rate is less than 50% at their maximum dose, namely, 50 mg/kg/d, for both of them by intraperitoneal administration). A plausible explanation for this is that 20c has better bioavailability relative to 17f and 20e. Indeed, a comparison of pharmacokinetic profiles of 20c and 20e showed that 20c has much better absorption than 20e (C_{max} values are 5.31 μ g/mL for **20c** and 2.74 μ g/mL for **20e** at a dose of 40 mg/kg by intraperitoneal administration. For details, see Table S3 and Figure S1 in Supporting Information). Therefore, further studies on the kinase inhibition profile and anti-AML activity of 20c both in vitro and in vivo will be carried out subsequently.

Kinase inhibition profiles of **20c** against a panel of recombinant human protein kinases are shown in Table 4. Compound **20c** potently inhibited FLT3 with an IC₅₀ value of 0.01 μ M (see Figure 1a). It just weakly inhibited Aurora A, FMS, FLT4, and c-Kit (IC₅₀s: 1.5 μ M, 2.8 μ M, 3.7 μ M, and 6.8 μ M, respectively). Compound **20c** displayed almost no inhibitory activity against the other 13 selected protein kinases. All of these demonstrate that **20c** is a potent FLT3 inhibitor with good kinase selectivity.

In Vitro Growth Inhibitory Activities of 20c against Leukemia and Other Cancer Cells. The growth inhibitory potencies of 20c against various cell lines, including leukemia and solid tumor cell lines, were examined, and the results are presented in Table 5. Compound 20c potently inhibited the growth of MV4-11 cells that express FLT3-ITD, with an IC₅₀ value of 0.006 μ M. It just exhibited very weak inhibitory activity against human T lymphoma Jurkat cells, human Burkitt's lymphoma Ramos cells, human lung cancer PC-9 and H292 cells, and human epithelial carcinoma A431 cells (IC₅₀: 3.05 μ M, 6.25 μ M, 3.72 μ M, 6.94 μ M, and 8.91 μ M, respectively). For other leukemia and solid tumor cell lines, including K562, U937, Karpas299, HCC827, A549, H2228, H820, MDA-MB-231, BT474, MCF-7, HCT116, SW480, LoVo, HeLa, SKOV-3, SK, DU145, PC-3, A431, and SH-SY5Y, 20c did not exhibit an obvious growth inhibition effect at the concentration of 10 μM

Signaling Inhibition in Intact MV4-11 Cells. The ability of **20c** to inhibit the activation of FLT3 and downstream signaling proteins in intact cells was assessed using Western blot analysis. After a 5 h treatment with increasing

Journal of Medicinal Chemistry

Table 2. 2-(Quinazolin-4-ylthio)thiazole Derivatives with Different Substituents at the 4- and 5-Positions of the Thiazole Ring Together with Their Antiviability Activity against FLT3-ITD-Expressing MV4-11 Cells and FLT3-Independent HCT116 Cells

$$R_1$$
 N R_2 R_2 R_3 R_4

		•	14		
Cmpd.	\mathbf{R}_1	R_2	R_3	MV4-11 ^a (IC ₅₀ , μ M)	HCT116 (IC ₅₀ , μM)
1a	-CH ₃	-CH ₃	Н	3.68 ± 0.79	> 10
15a	-CH ₃	-CH ₃	₽ _N C _c	0.45±0.23	> 10
15b	-CH ₃	-CH ₃	N CI	1.40±0.11	> 10
15c	-CH ₃	-CH ₃	O CF3	0.02±0.009	> 10
15d	-CH ₃	-CH ₃	NHCOCH ₃	> 5	> 10
15e	-CH ₃	-CH ₃		> 10	> 10
15f	-CH ₂ CH ₂ OCH ₃	-CH ₃	J _N C _c	0.21±0.11	> 10
15g	-CH ₂ CH ₂ OCH ₃	-CH ₃	O CF3	0.025±0.006	> 10
15h	-CH ₂ CH ₂ OCH ₃	-CH ₃	CF ₃	0.027±0.009	> 10
15i	-CH ₂ CH ₂ OCH ₃	-CH ₃	J _N	0.625±0.15	> 10
15j	-CH ₂ CH ₂ OCH ₃	-CH ₃	Ů _N △	2.42±1.13	> 10
15k	-CH ₂ CH ₂ OCH ₃	-CH ₃	The state of the s	1.90±0.97	> 10
151	-CH ₂ CH ₂ OCH ₃	J _N C _{ci}	-H	3.20±1.12	> 10
15m	-CH ₂ CH ₂ OCH ₃	UN CF₃	-H	0.83±0.11	> 10
15n	-CH ₂ CH ₂ OCH ₃	N CF3	-H	2.88±0.45	> 10
15 0	-CH ₂ CH ₂ OCH ₃	J _R	-H	9.04±2.23	> 10

 $[^]a$ Each compound was tested in triplicate; the data are presented as the mean \pm SD.

concentrations of **20c**, MV4-11 cells were harvested and lysed for an IP/wt assay. As shown in Figure 1b, **20c** inhibited FLT3 phosphorylation in a dose-dependent manner. Consistent with the downregulation of the phosphorylation of FLT3, the phosphorylation of the downstream signaling proteins STAT5 and ERK1/2 was also significantly inhibited at concentrations $>0.1~\mu\text{M}$ (Figure 1b). We also observed that **20c** did not

modulate the expression of these proteins during the drug treatment period.

In Vivo Effects of 20c against s.c. MV4-11 Tumor Xenografts. The *in vivo* antileukemia activity of 20c was evaluated using an MV4-11 xenograft model. In the MV4-11 model, when the tumor grew to a volume of 300–500 mm³, the mice were grouped and treated intraperitoneally once daily with

Journal of Medicinal Chemistry

Table 3. 2-(Quinazolin-4-ylthio)-1,3,4-thiadiazole Derivatives with Different Substituents at C-6 and C-7 of Quinazoline and the 5-Position of the Thiadiazole Ring Together with Their Anti-vViability Activity against FLT3-ITD-Expressing MV4-11 Cells and FLT3-Independent HCT116 Cells

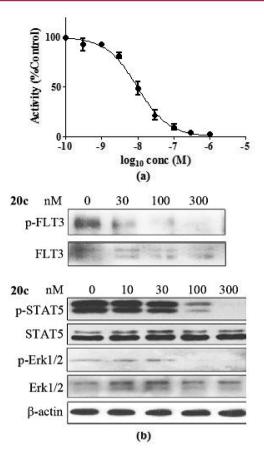
Cmpd.	R_1 R_2 R_4	R.	$MV4-11^a$	HCT116	
——————————————————————————————————————	IV _I	Κ2	104	$(IC_{50}, \mu M)$	$(IC_{50}, \mu M)$
1c	-	-	-	1.20 ± 0.33	> 10
1d	-	-	-	1.35 ± 0.58	> 10
17a	-OCH ₂ CH ₂ OCH ₃	-OCH ₂ CH ₂ OCH ₃	-Me	> 11	> 10
17b	-OCH ₂ CH ₂ OCH ₃	-OCH ₂ CH ₂ OCH ₃	-CHCH ₂	> 10	> 10
17c	-OCH ₂ CH ₂ OCH ₃	-OCH ₂ CH ₂ OCH ₃	-NCI	0.02 ± 0.011	> 10
17d	-OCH ₂ CH ₂ OCH ₃	-OCH ₂ CH ₂ OCH ₃	N F	0.40±0.18	> 10
17e	-OCH ₂ CH ₂ OCH ₃	-OCH ₂ CH ₂ OCH ₃	N Br	0.022±0.013	> 10
17f	-OCH ₂ CH ₂ OCH ₃	-OCH ₂ CH ₂ OCH ₃	H	0.005±0.002	> 10
17g	-OCH ₂ CH ₂ OCH ₃	-OCH ₂ CH ₂ OCH ₃	H	0.022±0.014	> 10
17h	-OCH ₂ CH ₂ OCH ₃	-OCH ₂ CH ₂ OCH ₃	N-CF ₃	0.30±0.16	> 10
20a	-H	~~~N~	-CHCH ₂	6.00±1.25	> 10
20b	-H	0~~N	H	0.01±0.006	> 10
20c	-H	~~N~O	H	0.006±0.003	> 10
20d	-H	~~~N~	N Cci	0.012±0.005	> 10
20e	-H	~~~N~	NO.	0.0003±0.0001	> 10
Sunitinib				0.003±0.002	
MLN518				0.055 ± 0.025	

^aEach compound was tested in triplicate; the data are presented as the mean \pm SD.

20, 40, or 100 mg/kg/d **20c** for 21 days. The tumor volumes were measured every 3 days. Treatment with **20c** at 100 mg/kg/d resulted in rapid and complete tumor regression in all mice of this group (see Figure 2a). Compound **20c** treatment at 20 mg/kg/d and 40 mg/kg/d significantly slowed down the tumor growth; the tumor inhibition rates are 66% and 84%, respectively. Moreover, during the whole experiment, no

significant weight loss (see Figure 2b) or any other obvious signs of toxicity were observed for all of the 20c-treated mice.

Compound **20c** was also evaluated for its effects on the tumor mitotic index (Ki67) and apoptosis using histological and immunohistochemical techniques. Similar to the tumor xenograft model, a dose of 20 mg/kg/d of **20c** was administered in the MV4-11 model. After treatment for 2 or 3 days, tumors were collected and analyzed. Tumor tissues


Table 4. Kinase Inhibition Profile for 20c against Human FLT3 and a Panel of Other Selected Protein Kinases

kinase	$IC_{50} (\mu M)$
FLT3	0.01
c-Kit	6.8
FMS	2.8
PDGFR	>10
PDGFR	>10
FLT1	>1
KDR	>10
FLT4	3.7
Aurora A	1.5
IGF-1R	>10
Met	>10
Pim-1	>10
PLK1	>10
Ret	>10
Syk	>10
c-Raf	>10
EGFR	>10
JAK3	>10
Lck	>10

Table 5. Antiproliferative Activities of 20c against Various Cell Lines

cell lines	tumor type	$IC_{50} (\mu M)$
MV4-11	human acute myeloid leukemia	0.006
K562	human chronic myelogenous leukemia	12.65
U937	human leukemic monocyte lymphoma	>20
Jurkat	human T lymphoma	3.05
Ramos	human Burkitt's lymphoma	6.25
Karpas299	human anaplastic large cell lymphoma	>20
HCC827	human lung cancer	12.5
A549	human lung cancer	>20
H2228	human lung cancer	>20
H820	human lung cancer	>20
PC-9	human lung cancer	3.72
H292	human lung cancer	6.94
MDA-MB-231	human breast cancer	>20
BT474	human breast cancer	>20
MCF-7	human breast cancer	>20
HCT116	human colorectal carcinoma	>20
SW480	human colorectal carcinoma	11.16
LoVo	human colorectal carcinoma	>20
HeLa	human cervical carcinoma	>20
SKOV-3	human ovarian carcinoma	>20
SK	human ovarian carcinoma	>20
DU145	human prostate cancer	18.60
PC-3	human prostate cancer	15.72
A431	human epithelial carcinoma	8.91
SH-SY5Y	human neurobfastoma	>20

from the vehicle group were stained strongly with Ki67, indicating a large number of highly proliferative cells (see Figure 2c). Conversely, the tumor tissues from the **20c**-treated groups showed significantly fewer Ki67-positive cells. Furthermore, the TUNEL data showed an obvious increase in the percentage of apoptotic cells in a time-dependent manner. Hematoxylin staining also showed a significant regression of MV4-11 tumors (Figure 2c).

Figure 1. (a) Dose—response relationship of **20c** inhibition against the human FLT3 kinase (ATP concentration: 200 μ M). (b) Western blot analysis showing that **20c** inhibits FLT3 autophosphorylation and the phosphorylation of downstream signaling proteins STAT5 and ERK1/2

■ CONCLUSIONS

We have described the optimization of the FLT3 inhibitor 2-(6,7-dimethoxyquinazolin-4-ylthio)thiazole (1) that showed considerable enzymatic potency but very low anti-AML activity in vitro and in vivo. SAR studies centering around the head (thiazole) and tails (6- and 7-positions) of the quinazoline moiety led to the discovery of compounds displaying significantly increased potency against FLT3-driven MV4-11 cells but not active against HCT116 that is FLT3-independent. In-depth in vitro and in vivo assays were then carried out on one of the most active compounds, 20c, which exhibited a higher potency against MV4-11 with IC₅₀ = 0.006 μ M and the maximum tumor inhibition rate in an in vivo MV4-11 xenograft model. Compound 20c displayed very good FLT3 kinase selectivity against a panel of selected kinases and considerable sensitivity against FLT3-driven MV4-11 cells. Western blot and immunohistochemical analysis were carried out to illustrate the mechanism of action of 20c, which showed that 20c downregulated the phosphorylation of FLT3/STAT5/ERK, blocked cell proliferation, and induced apoptosis in tumor tissue.

■ EXPERIMENTAL SECTION

Chemistry Methods. Unless otherwise noted, all materials were obtained from commercial suppliers and used without further purification. The synthesis of compounds 1, 8, 13, 15, 17, and 20 was as previously reported. All final compounds were purified to >95% purity, as determined by high-performance liquid chromatography

Journal of Medicinal Chemistry

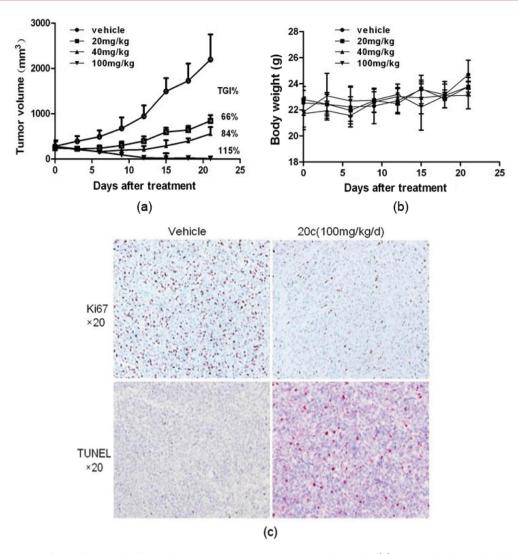


Figure 2. (a) Antitumor efficacy of 20c at different doses in an *in vivo* MV4-11 xenograft model. (b) Average body weights for 20c-treated mice groups at different doses (20 mg/kg, 40 mg/kg, and 100 mg/kg) and vehicle group in an *in vivo* MV4-11 xenograft model. (c) Ki67 and TUNEL staining of tumor tissues showing the inhibition of cell proliferation and the induction of apoptosis.

(HPLC). HPLC analysis was carried out on a Waters 2695 HPLC system with the use of a Kromasil C18 column (4.6 mm \times 250 mm, 5 um). ^1H NMR and ^{13}C NMR spectra were recorded on a Bruker AV-400 spectrometer at 400 and 100 MHz, respectively. Chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) as an internal standard. Multiplicities are given as s (singlet), d (doublet), dd (double—doublet), t (triplet), q (quadruplet), m (multiplet), and br s (broad signal). Low-resolution and high-resolution mass spectral (HRMS) data were obtained on an Agilent 1100 series LCMS with UV detection at 254 nm using electrospray ionization. Thin layer chromatography (TLC) was conducted on aluminum sheet silica gel Merck 60F254. The spots were visualized using ultraviolet light.

6,7-Dimethoxy-4-(thiazol-2-ylthio)quinazoline (1). A solution of 4-chloro-6,7-dimethoxy-quinazoline (2, 600 mg, 2.67 mmol), thiazole-2-thiol (330 mg, 2.8 mmol), and K_2CO_3 (1.1 g, 7.98 mmol) in 2-butanone was heated under reflux for 3 h. The reaction mixture was evaporated under reduced pressure. The residue was extracted with CH_2Cl_2 and water. The organic layer was collected, washed with brine, and dried over MgSO₄. The solvent was evaporated under reduced pressure. The residue was decolorized by active carbon and purified by recrystallization from ethanol yielding 653 mg (80%, 99% HPLC purity) of 1 as fine white crystals. 1H NMR (400 MHz, DMSO- d_6): δ 8.88(s, 1H), 8.06(d, J = 3.2 Hz, 1H), 8.03(d, J = 3.2 Hz, 1H), 7.40(s, 1H), 7.29(s, 1H), 4.00(s, 6H) ppm. ^{13}C NMR (100 MHz, DMSO- d_6):

 δ 162.4, 156.1, 153.8, 151.6, 150.5, 146.0, 143.0, 125.3, 117.4, 107.1, 100.7, 56.3, 56.1 ppm. MS (ESI, positive ion) m/z: 306.10 [M + H].

6,7-Dimethoxy-4-(4-methylthiazol-2-ylthio)quinazoline (1a). The title compound was prepared from 2 and 4-methylthiazole-2-thiol using the procedure previously described for compound 1 and was purified by column chromatography eluting with 30–50% EtOAc in petroleum ether to provide 1a (300 mg, 82% yield, 98% HPLC purity). 1 H NMR (400 MHz, CDCl₃): δ 8.88(s, 1H), 7.29(s, 1H), 7.24(s, 1H), 7.15(d, J = 1.2 Hz, 1H), 4.05(s, 6H), 2.53(d, J = 0.8 Hz, 3H) ppm. MS (ESI, negative ion) m/z: 318.30 [M – H].

6,7-Bis(2-methoxyethoxy)-4-(thiazol-2-ylthio)quinazoline (1b). The title compound was prepared from 3 and thiazole-2-thiol using the procedure previously described for compound 1 and was purified by column chromatography eluting with 30–50% EtOAc in petroleum ether to provide 1b (200 mg, 75% yield, 98% HPLC purity). 1 H NMR (400 MHz, CDCl₃): δ 8.89(s, 1H), 7.97(d, J = 3.2 Hz, 1H), 7.61(d, J = 3.2 Hz, 1H), 7.33(s, 1H), 4.33(m, 4H), 3.89(m, 4H), 3.50(d, J = 7.6 Hz, 6H) ppm. HRMS (m/z): calcd for $C_{17}H_{19}N_3O_4S_2$ [M + H] $^+$ 394.0895; found, 393.8950.

4-([1,3,4]Thiadiazol-2-ylthio)-6,7-dimethoxyquinazoline (1c). The title compound was prepared from 2 and [1,3,4]thiadiazole-2-thiol using the procedure previously described for compound 1 and was purified by column chromatography eluting with 30–50% EtOAc in petroleum ether to provide 1c (350 mg, 86% yield, 98% HPLC purity). 1 H NMR (400 MHz, CDCl₃): δ 9.33(s, 1H), 8.97(s, 1H),

7.37(s, 1H), 7.23(s, 1H), 4.09(d, J = 5.6 Hz, 6H) ppm. HRMS (m/z): calcd for $C_{12}H_{10}N_4O_2S_2$ [M + H]⁺ 307.0323; found, 307.2012.

4-([1,3,4]Thiadiazol-2-ylthio)-6,7-bis(2-methoxyethoxy)-quinazoline (1d). The title compound was prepared from 3 and [1,3,4]thiadiazole-2-thiol using the procedure previously described for compound 1 and was purified by column chromatography eluting with 30–50% EtOAc in petroleum ether to provide 1d (300 mg, 79% yield, 98% HPLC purity). ¹H NMR (400 MHz, CDCl₃): δ 9.86(s, 1H), 8.94(s, 1H), 7.46(s, 1H), 7.40(s, 1H), 4.38(q, 4H), 3.78(q, 4H), 3.37(d, J = 7.6 Hz, 6H) ppm. HRMS (m/z): calcd for C₁₆H₁₈N₄O₄S₂ [M + Na]⁺ 417.0667; found, 417.0803.

7-Methoxy-6-[2-(piperidin-1-yl)ethoxy]-4-(thiazol-2-ylthio)-quinazoline (8a). Phosphorus oxychloride (6.0 mL) was added to a solution of 7-methoxy-4-oxo-3,4-dihydro-quinazolin-6-yl acetate (4, 3.0 g, 12.8 mmol) and N,N-diethylaniline (2.5 mL, 15.4 mmol) in toluene at room temperature. Then the mixture was stirred in a preheated oil bath (100 °C) and refluxed for 3 h. The solvent was removed under reduced pressure. Ice water (50 mL) was added and the light brown precipitate filtered and washed with ice water (100 mL). The brownish precipitate was dried to give 5 (2.85 g, 88%). MS (ESI, positive ion) m/z: 253.03 [M + H].

A solution of 5 (2.0 g, 7.9 mmol), thiazole-2-thiol (927.6 mg, 7.9 mmol), and K_2CO_3 (3.27 g, 23.7 mmol) in 2-butanone was heated under reflux for 2 h. The reaction mixture was evaporated under reduced pressure. The residue was extracted with CH_2Cl_2 and water. The organic layer was collected, washed with brine, and dried over MgSO₄. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography eluting with 30–50% EtOAc in petroleum ether to provide 6 (2.35 g, 89% yield) as an orange yellow powder. ¹H NMR (400 MHz, CDCl₃): δ 8.95(s, 1H), 7.99(d, J = 3.2 Hz, 1H), 7.79(s, 1H), 7.63(d, J = 3.2 Hz, 1H), 7.43(s, 1H), 4.02(s, 3H), 2.41(s, 3H) ppm.

A solution of 7-methoxy-4-(thiazol-2-ylthio)quinazolin-6-yl acetate (6, 250 mg, 0.75 mmol) in NH $_3$ ·H $_2$ O/MeOH (10 mL, 1.5 N solution) was stirred at room temperature for 5 h. The reaction mixture was monitored by TLC. The solvent was evaporated under reduced pressure to give the crude intermediate 7 (yield by 100%). The residue was not further purified and directly used for the next step reaction.

A solution of 7-methoxy-4-(thiazol-2-ylthio)quinazolin-6-ol (7, 218.5 mg, 0.75 mmol) and K_2CO_3 (310.4 mg, 2.25 mmol) in 2-butanone (10 mL) was stirred at room temperature for 15 min, and then 2-piperidinoethylchloride hydrochloride (207 mg, 1.13 mmol) was added. This reaction mixture was heated under reflux for 7 h. The solvent was evaporated under reduced pressure. The residue was extracted with CH_2Cl_2 and water. The organic layer was collected, washed with brine, and dried over MgSO₄. The solvent was evaporated under reduced pressure. The residue was recrystallized from ethyl ether yielding 153 mg (50%, 96% HPLC purity) of 8a as a white powder. 1H NMR (400 MHz, DMSO- d_6): δ 8.88(s, 1H), 8.06(d, J = 3.2 Hz, 1H), 8.03(d, J = 3.2 Hz, 1H), 7.40(s, 1H), 7.38(s, 1H), 4.31(t, J = 6.0 Hz, 2H), 4.00 (s, 3H), 2.75(t, J = 5.8 Hz, 2H), 2.48(br s, 3H), 1.84(s, 1H), 1.50–1.55(m, 4H), 1.39–1.40(m, 2H) ppm. MS (ESI, positive ion) m/z: 403.03 [M + H].

4-Chloro-6-methoxyquinazolin-7-yl acetate (10). Phosphorus oxychloride (3.0 mL) was added to a solution of 6-methoxy-4-oxo-3,4-dihydro-quinazolin-7-yl acetate (9, 3.0 g, 12.8 mmol) in chloroform at room temperature. Then the mixture was stirred in a preheated oil bath (70 °C) and refluxed for 1 h, and then triethylamine (4.8 mL) was added dropwise. The reaction mixture was refluxed for 12 h. The solvent was removed under reduced pressure. Ice water (50 mL) was added, and the aqueous solution was neutralized with saturated sodium carbonate solution. The aqueous solution was extracted with CH_2Cl_2 . The organic layer was collected, washed with brine, and dried over MgSO₄. The solvent was evaporated under reduced pressure to afford 10 (3.18 g, 98%) without further purification. MS (ESI, positive ion) m/z: 253.03 [M + H].

7-Methoxy-6-(2-morpholinoethoxy)-4-(thiazol-2-ylthio)-quinazoline (8b). The title compound was prepared from 7 and 4-(2-chloroethyl)morpholine hydrochloride using the procedure previously described for compound 8a and was purified by recrystallization from

ethyl ether. Yield: 100 mg (37%, 96% HPLC purity). 1 H NMR (400 MHz, DMSO- d_{6}): δ 8.88(s, 1H), 8.06(d, J = 3.6 Hz, 1H), 8.03(d, J = 3.2 Hz, 1H), 7.40(s, 1H), 7.36(s, 1H), 4.33(t, J = 5.8 Hz, 2H), 4.00(s, 3H), 3.61(t, J = 4.4 Hz, 4H), 2.80(t, J = 5.8 Hz, 2H), 2.51(t, J = 1.8 Hz, 4H) ppm. HRMS (m/z): calcd for $C_{18}H_{20}N_{4}O_{3}S_{2}$ [M + H] $^{+}$ 405.1055; found, 405.0109.

7-Methoxy-6-(2-(pyrrolidin-1-yl)ethoxy)-4-(thiazol-2-ylthio)-quinazoline (8c). The title compound was prepared from 7 and 1-(2-chloroethyl)pyrrolidine hydrochloride using the procedure previously described for compound 8c and was purified by recrystallization from ethyl ether. Yield: 92 mg (42%, 96% HPLC purity). ¹H NMR (400 MHz, DMSO- 4_6): δ 8.88(s, 1H), 8.06(d, J = 3.2 Hz, 1H), 8.03(d, J = 3.2 Hz, 1H), 7.41(s, 1H), 7.36(s, 1H), 4.31(t, J = 5.6 Hz, 2H), 4.01(s, 3H), 2.91(t, J = 5.6 Hz, 2H), 2.59(s, 4H), 1.71(s, 4H) ppm. MS (ESI, positive ion) m/z: 388.99 [M + H].

3-[7-Methoxy-4-(thiazol-2-ylthio)quinazolin-6-yloxy]-N,N-dimethylpropan-1-amine (8d). The title compound was prepared from 7 and 3-chloro-N,N-dimethylpropan-1-amine hydrochloride using the procedure previously described for compound 8d and was purified by recrystallization from ethyl ether. Yield: 90 mg (46%, 96% HPLC purity). 1 H NMR (400 MHz, DMSO- d_6): δ 8.87(s, 1H), 8.06(d, J = 3.2 Hz, 1H), 8.03(d, J = 3.2 Hz, 1H), 7.29(s, 1H), 7.28(s, 1H), 4.22(t, J = 6.6 Hz, 2H), 4.01(s, 3H), 2.41(t, J = 7.0 Hz, 2H), 2.18(s, 6H), 1.96(m, 2H) ppm. MS (ESI, positive ion) m/z: 376.99 [M + H].

7-Methoxy-6-(3-morpholinopropoxy)-4-(thiazol-2-ylthio)-quinazoline (*8e*). The title compound was prepared from 7 and 4-(3-chloropropyl)morpholine using the procedure previously described for compound 8e and was purified by recrystallization from ethyl ether. Yield: 150 mg (54%, 96% HPLC purity). ¹H NMR (400 MHz, CDCl₃): δ 8.90(s, 1H), 7.97(d, J = 3.2 Hz, 1H), 7.60(d, J = 3.6 Hz, 1H), 7.30(s, 1H), 4.26(t, J = 6.4 Hz, 2H), 4.04(s, 3H), 3.75(s, 4H), 2.60(br s, 2H), 2.51(br s, 4H), 2.15(br s, 2H) ppm. HRMS (m/z): calcd for $C_{19}H_{22}N_4O_3S_2$ [M + H]⁺ 419.1212; found, 419.1217.

6-Methoxy-7-[2-(piperidin-1-yl)ethoxy]-4-(thiazol-2-ylthio)-quinazoline (13a). The title compound was prepared from 12 and 1-(2-chloroethyl)piperidine hydrochloride using the procedure previously described for compound 8a and was purified by recrystallization from ethyl ether. Yield: 211 mg (36%, 96% HPLC purity). 1 H NMR (400 MHz, CDCl₃): δ 8.89(s, 1H), 7.97(d, J = 3.6 Hz, 1H), 7.60(d, J = 3.2 Hz, 1H), 7.30(d, J = 6.0 Hz, 2H), 4.34(br s, 2H), 4.04(s, 3H), 2.95(br s, 2H), 2.60(br s, 4H), 1.67(br s, 4H), 1.48(br s, 2H) ppm. HRMS (m/z): calcd for $C_{19}H_{22}N_4O_2S_2$ [M + H]⁺ 403.1262; found, 403.1256.

6-Methoxy-7-(2-morpholinoethoxy)-4-(thiazol-2-ylthio)-quinazoline (13b). The title compound was prepared from 12 and 4-(2-chloroethyl)morpholine hydrochloride using the procedure previously described for compound 8a and was purified by recrystallization from ethyl ether. Yield: 112 mg (29%, 96% HPLC purity). 1 H NMR (400 MHz, CDCl₃): δ 8.90(s, 1H), 7.97(d, J = 3.6 Hz, 1H), 7.60(d, J = 3.2 Hz, 1H), 7.30(d, J = 2.0 Hz, 2H), 4.35(t, J = 6.4 Hz, 2H), 4.04(s, 3H), 3.78(t, J = 4.4 Hz, 4H), 2.96(t, J = 5.8 Hz, 2H), 2.67(br s, 4H) ppm. HRMS (m/z): calcd for C_{18} H₂₀N₄O₃S₂ [M + H]⁺ 405.1055; found, 405.1059.

6-Methoxy-7-[2-(pyrrolidin-1-yl)ethoxy]-4-(thiazol-2-ylthio)-quinazoline (13c). The title compound was prepared from 12 and 1-(2-chloroethyl)pyrrolidine hydrochloride using the procedure previously described for compound 8a and was purified by recrystallization from ethyl ether. Yield: 124 mg (38%, 96% HPLC purity). 1 H NMR (400 MHz, CDCl₃): δ 8.89(s, 1H), 7.97(d, J = 3.6 Hz, 1H), 7.60(d, J = 3.2 Hz, 1H), 7.30(d, J = 2.8 Hz, 2H), 4.32(t, J = 6.0 Hz, 2H), 4.05(s, 3H), 3.07(t, J = 6.0 Hz, 2H), 2.70(br s, 4H), 1.85(br s, 4H) ppm. HRMS (m/z): calcd for C₁₈H₂₀N₄O₂S₂ [M + H]⁺ 389.1106; found, 389.1101.

6-Methoxy-7-(3-morpholinopropoxy)-4-(thiazol-2-ylthio)-quinazoline (13d). The title compound was prepared from 12 and 4-(3-chloropropyl)morpholine using the procedure previously described for compound 8a and was purified by recrystallization from ethyl ether. Yield: 150 mg (40%, 96% HPLC purity). ¹H NMR (400 MHz, CDCl₃): δ 8.90(s, 1H), 7.97(d, J = 3.2 Hz, 1H), 7.61(d, J = 3.2 Hz, 1H), 7.30(s, 1H), 7.27(s, 1H), 4.27(t, J = 6.6 Hz, 2H), 4.04(s, 3H), 3.76(br s, 4H), 2.62(br s, 2H), 2.53(br s, 4H), 2.16(br s, 2H) ppm.

HRMS (m/z): calcd for $C_{19}H_{22}N_4O_3S_2$ [M + H]⁺ 419.1212; found, 419.1221.

N-(3-Chlorophenyl)-2-[2-(6,7-dimethoxyquinazolin-4-ylthio)-4-methylthiazol-5-yl]acetamide (15a). A solution of 4-chloro-6,7-dimethoxyquinazoline (2, 500 mg, 2.22 mmol), 2-(2-mercapto-4-methylthiazol-5-yl)acetic acid (420 mg, 2.22 mmol), and K_2CO_3 (920 mg, 6.66 mmol) in 2-butanone was refluxed overnight. The reaction mixture was evaporated under reduced pressure. Ice water (100 mL) was added and the light yellow precipitate filtered and washed with ice water (100 mL) and CH_2Cl_2 . The light yellow precipitate was dried to give 14a (655 mg, 78%). ¹H NMR (400 MHz, DMSO- d_6): δ 12.77(s, 1H), 8.87(s, 1H), 7.39(s, 1H), 7.28(s, 1H), 4.00(s, 6H), 3.92(s, 2H), 2.34(s, 3H) ppm.

2-[2-(6,7-Dimethoxyquinazolin-4-ylthio)-4-methylthiazol-5-yl]-acetic acid 14a (250 mg, 0.66 mmol) was reacted with 3-chlorobenzenamine (0.1 mL, 0.99 mmol) in the presence of 1-hydroxybenzotriazole (HOBT, 107.4 mg, 0.79 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI, 152.4 mg, 0.79 mmol), and N_i -diisopropylethylamine (DIEA, 0.13 mL, 0.79 mmol) in CH₂Cl₂ (10 mL). The mixture was heated under reflux for 24 h. Then, the mixture was cooled to room temperature, water (5 mL) added, and the precipitate filtered and washed with ice water and CH₂Cl₂ to obtain 15a (194 mg, 60%). The light white precipitate was purified by recrystallization from ethanol (>98% HPLC purity). 1 H NMR (400 MHz, DMSO- 1 6): δ 10.52(s, 1H), 8.86(s, 1H), 7.82(s, 1H), 7.45(d, 1 6 = 8.4 Hz, 1H), 7.34—7.39(m, 2H), 7.29(s, 1H), 7.13(d, 1 7 = 7.6 Hz, 1H), 4.00(s, 8H), 2.39(s, 3H) ppm. MS (ESI, negative ion) 1 2: 485.00 [M — H].

N-(3,5-Dichlorophenyl)-2-[2-(6,7-dimethoxyquinazolin-4-ylthio)-4-methylthiazol-5-yl]acetamide (15b). The title compound was prepared from 14a and 3,5-dichlorobenzenamine using the procedure previously described for compound 15a and was purified by recrystallization from ethanol. Yield: 110 mg (33%, > 98% HPLC purity). 1 H NMR (400 MHz, DMSO- d_6): δ 10.68(s, 1H), 8.87(s, 1H), 7.67(s, 2H), 7.40(s, 1H), 7.30(d, J = 8.4 Hz, 2H), 4.01(d, J = 7.6 Hz, 6H), 3.96(s, 2H), 2.39(s, 3H) ppm. MS (ESI, positive ion) m/z: 520.91 [M + H].

2-[2-(6,7-Dimethoxyquinazolin-4-ylthio)-4-methylthiazol-5-yl]-N-[3-(trifluoromethyl)phenyl]acetamide (15c). The title compound was prepared from 14a and 3-(trifluoromethyl)benzenamine using the procedure previously described for compound 15a and was purified by recrystallization from ethanol. Yield: 153 mg (45%, > 98% HPLC purity). 1 H NMR (400 MHz, DMSO- d_6): δ 10.67(s, 1H), 8.87(s, 1H), 8.11(s, 1H), 7.78(d, J = 7.6 Hz, 1H), 7.58(t, J = 8.0 Hz, 1H), 7.40–7.44(m, 2H), 7.29(s, 1H), 4.04(s, 2H), 4.00(s, 6H), 2.40(s, 3H) ppm. MS (ESI, negative ion) m/z: 519.00 [M – H].

N-(4-Acetamidephenyl)-2-[2-(6,7-dimethoxyquinazolin-4-ylthio)-4-methylthiazol-5-yl]acetamide (*15d*). The title compound was prepared from **14a** and *N-*(4-aminophenyl)acetamide using the procedure previously described for compound **15a** and was purified by recrystallization from ethanol. Yield: 232 mg (57%, > 98% HPLC purity). 1 H NMR (400 MHz, DMSO- 1 6): δ 10.27(s, 1H), 9.90(s, 1H), 8.86(s, 1H), 7.51(s, 4H), 7.39(s, 1H), 7.28(s, 1H), 4.00(s, 6H), 3.96(s, 2H), 2.40(s, 3H), 2.02(s, 3H) ppm. MS (ESI, negative ion) m/z: 508.00 [M – H].

N-(*4-Chlorobenzyl*)-2-[2-(6,7-dimethoxyquinazolin-4-ylthio)-4-methylthiazol-5-yl]acetamide (15e). The title compound was prepared from 14a and (4-chlorophenyl)methanamine using the procedure previously described for compound 15a and was purified by recrystallization from ethanol. Yield: 153 mg (48%, > 98% HPLC purity). 1 H NMR (400 MHz, DMSO- d_6): δ 8.85(s, 1H), 8.77(s, 1H), 7.39(d, J = 7.2 Hz, 3H), 7.30(d, J = 8.0 Hz, 3H), 4.30(d, J = 4.8 Hz, 2H), 4.00(s, 6H), 3.81(s, 2H), 2.35(s, 3H) ppm. MS (ESI, positive ion) m/z: 500.96 [M + H].

2-{2-[6,7-Bis(2-methoxyethoxy)quinazolin-4-ylthio]-4-methylthiazol-5-yl}-N-(3-chlorophenyl)acetamide (15f). A solution of 4-chloro-6,7-bis(2-methoxyethoxy) quinazoline (3, 500 mg, 1.60 mmol), 2-(2-mercapto-4-methylthiazol-5-yl)acetic acid (302.6 mg, 1.60 mmol), and K₂CO₃ (662 mg, 4.80 mmol) in 2-butanone was refluxed overnight. The reaction mixture was evaporated under reduced

pressure. Ice water (100 mL) was added and the light yellow precipitate filtered and washed with ice water (100 mL). The light yellow precipitate was recrystallized from ethanol to give 14b (655 mg, 78%).

2-{2-[6,7-Bis(2-methoxyethoxy)quinazolin-4-ylthio]-4-methylthiazol-5-yl}acetic acid (14b) (250 mg, 0.54 mmol) was reacted with the 3-chlorobenzenamine (0.1 mL, 0.80 mmol) in the presence of 1hydroxybenzotriazole (HOBT, 87.0 mg, 0.65 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI, 123.4 mg, 0.65 mmol), and N,N-diisopropylethylamine (DIEA, 0.11 mL, 0.65 mmol) in CH₂Cl₂ (10 mL). The mixture was heated under reflux for 24 h. Then the clear solution was evaporated under reduced pressure, the residue was chromatographed on a silica gel column (eluting system: EtOAc) to obtain 15f (200 mg, 62%) as a white powder, which was purified by recrystallization from ethanol (>98% HPLC purity). ¹H NMR (400 MHz, DMSO- d_6): δ 10.52(s, 1H), 8.85(s, 1H), 7.82(t, I = 1.8 Hz, 1H), 7.42 - 7.46(m, 2H), 7.38(s, 1H), 7.34 - 7.36(m, 2H), 7.38(s, 1H), 71H), 7.13(dd, J = 0.8 Hz, 0.8 Hz, 1H), 4.35(m, 4H), 4.01(s, 2H),3.77(m, 4H), 3.36(d, J = 6.0 Hz, 6H), 2.39(s, 3H) ppm. MS (ESI, negative ion) m/z: 573.02 [M – H].

2-{2-[6,7-Bis(2-methoxyethoxy)quinazolin-4-ylthio]-4-methylthiazol-5-yl}-N-[3-(trifluoromethyl)phenyl]acetamide (15g). The title compound was prepared from 14b and 3-(trifluoromethyl)benzenamine using the procedure previously described for compound 15f and was purified by column chromatography (eluting system: EtOAc) and recrystallization from ethanol. Yield: 119 mg (37%, > 98% HPLC purity). 1 H NMR (400 MHz, DMSO- 1 6): δ 10.67(s, 1H), 8.86(s, 1H), 8.11(s, 1H), 7.78(d, 1 = 8.0 Hz, 1H), 7.58(t, 1 = 8.0 Hz, 1H), 7.43(d, 1 = 6.8 Hz, 2H), 7.35(s, 1H), 4.36(t, 1 = 2.2 Hz, 4H), 4.03(s, 2H), 3.77(t, 1 = 2.2 Hz, 4H), 3.36(d, 1 = 5.6 Hz, 6H), 2.40(s, 3H) ppm. MS (ESI, negative ion) 1 0/ 1 2: 607.22 [M – H].

2-[2-[6,7-Bis(2-methoxyethoxy)quinazolin-4-ylthio]-4-methylthiazol-5-yl}-N-[4-(trifluoromethyl)phenyl]acetamide (15h). The title compound was prepared from 14b and 4-(trifluoromethyl)benzenamine using the procedure previously described for compound 15f and was purified by column chromatography (eluting system: EtOAc) and recrystallization from ethanol. Yield: 160 mg (49%, > 98% HPLC purity). ¹H NMR (400 MHz, DMSO- d_6): δ 10.69(s, 1H), 8.85(s, 1H), 7.82(d, J = 8.4 Hz, 2H), 7.70(d, J = 8.8 Hz, 2H), 7.42(s, 1H), 7.35(s, 1H), 4.36(m, 4H), 4.05(s, 2H), 3.77(m, 4H), 3.36(d, J = 6.0 Hz, 6H), 2.40(s, 3H) ppm. MS (ESI, negative ion) m/z: 607.22 [M – H].

2-{2-[6,7-Bis(2-methoxyethoxy)quinazolin-4-ylthio]-4-methylthiazol-5-yl}-N-(3,5-dimethylphenyl)acetamide (15i). The title compound was prepared from 14b and 3,5-dimethylbenzenamine using the procedure previously described for compound 15f and was purified by column chromatography (eluting system: EtOAc) and recrystallization from ethanol. Yield: 210 mg (69%, > 98% HPLC purity). ¹H NMR (400 MHz, DMSO- d_6): δ 10.17(s, 1H), 8.85(s, 1H), 7.42 (s, 2H), 7.35(s, 1H), 7.22(s, 1H), 6.71(s, 1H), 4.36(m, 4H), 3.96(s, 2H), 3.77(m, 4H), 3.36(d, J = 6.0 Hz, 6H), 2.39(s, 3H), 2.23(s, 6H) ppm. MS (ESI, negative ion) m/z: 567.02 [M – H].

2-{2-[6,7-Bis(2-methoxyethoxy)quinazolin-4-ylthio]-4-methylthiazol-5-yl}-N-cyclopropylacetamide (15j). The title compound was prepared from 14b and cyclopropanamine using the procedure previously described for compound 15f and was purified by column chromatography (eluting system: EtOAc) and recrystallization from ethanol. Yield: 90 mg (33%, > 98% HPLC purity). 1 H NMR (400 MHz, CDCl₃): δ 8.88(s, 1H), 7.33(s, 1H), 7.30(s, 1H), 5.73(s, 1H), 4.32(t, J = 4.0 Hz, 4H), 3.89(t, J = 4.0 Hz, 4H), 3.71(s, 2H), 3.50(d, J = 6.4 Hz, 6H), 2.72(m, 1H), 2.42(s, 3H), 0.79(m, 2H), 0.50(m, 2H) ppm. MS (ESI, positive ion) m/z: 505.00 [M + H].

2-{2-[6,7-Bis(2-methoxyethoxy)quinazolin-4-ylthio]-4-methylthiazol-5-yl}-N-(6-methoxybenzo[d]thiazol-2-yl)acetamide (15k). The title compound was prepared from 14b and 6-methoxybenzo-[d]thiazol-2-amine using the procedure previously described for compound 15f and was purified by column chromatography (eluting system: EtOAc) and recrystallization from ethanol. Yield: 102 mg (30%, > 98% HPLC purity). 1 H NMR (400 MHz, DMSO-d₆): δ 12.60(s, 1H), 8.88(s, 1H), 7.66(d, J = 8.8 Hz, 1H), 7.58(s, 1H), 7.43(s,

1H), 7.35(s, 1H), 7.04(d, J = 7.2 Hz, 1H), 4.36(br s, 4H), 4.17(s, 2H), 3.81(s, 3H), 3.77(br s, 4H), 3.37(br s, 6H), 2.40(s, 3H) ppm. HRMS (m/z): calcd for $C_{28}H_{29}N_5O_6S_3$ [M + H] $^+$ 628.1358; found, 628.0308.

2-{2-[6,7-Bis(2-methoxyethoxy)quinazolin-4-ylthio]thiazol-4-yl}-N-(3-chlorophenyl)acetamide (15l). A solution of 4-chloro-6,7-bis(2-methoxyethoxy)quinazoline (3, 1.0 g, 3.20 mmol), 2-(2-mercaptothiazol-4-yl)acetic acid (561.0 mg, 3.20 mmol), and K_2CO_3 (1.32 g, 9.60 mmol) in 2-butanone was refluxed overnight. The reaction mixture was evaporated under reduced pressure. Ice water (100 mL) was added and the light yellow precipitate filtered and washed with ice water (100 mL). The light yellow precipitate was recrystallized from ethanol to give 14c (1.1 g, 76%). ¹H NMR (400 MHz, DMSO- d_6): δ 12.53(s, 1H), 8.89(s, 1H), 7.77(s, 1H), 7.43(s, 1H), 7.34(s, 1H), 4.36(br s, 4H), 3.81(s, 2H), 3.78(br s, 4H), 3.36(br s, 6H) ppm. MS (ESI, negative ion) m/z: 450.10 [M – H].

2-{2-[6,7-Bis(2-methoxyethoxy)quinazolin-4-ylthio]thiazol-4-yl}-acetic acid (14c, 450.0 mg, 1.0 mmol) was reacted with the 3-chlorobenzenamine (0.2 mL, 1.6 mmol) in the presence of 1-hydroxybenzotriazole (HOBT, 162.2 mg, 1.2 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI, 230.0 mg, 1.2 mmol), and N_iN -diisopropylethylamine (DIEA, 0.2 mL, 1.2 mmol) in CH₂Cl₂ (10 mL). The mixture was heated under reflux for 24 h. Then the clear solution was evaporated under reduced pressure, and the residue was chromatographed on a silica gel column (eluting system: EtOAc) to obtain 15l (360 mg, 64%, > 96% HPLC purity) as a white powder. 1 H NMR (400 MHz, DMSO- d_6): δ 10.47(s, 1H), 8.89(s, 1H), 7.85(s, 1H), 7.81(s, 1H), 7.48–7.44(m, 2H), 7.37–7.33(m, 2H), 7.12(d, J = 8.0 Hz, 1H), 4.36(br s, 4H), 3.91(s, 2H), 3.77(br s, 4H), 3.36(br s, 6H) ppm. MS (ESI, negative ion) m/z: 559.16 [M – H].

2-{2-[6,7-Bis(2-methoxyethoxy)quinazolin-4-ylthio]thiazol-4-yl}-N[3-(trifluoromethyl)phenyl]acetamide (15m). The title compound was prepared from 14c and 3-(trifluoromethyl)benzenamine using the procedure previously described for compound 15l and was purified by column chromatography (eluting system: EtOAc) and recrystallization from ethanol. Yield: 276 mg (47%, > 96% HPLC purity). ¹H NMR (400 MHz, DMSO- d_6): δ 10.62(s, 1H), 8.89(s, 1H), 8.14(s, 1H), 7.83(s, 1H), 7.79(d, J = 8.4 Hz, 1H), 7.57(t, J = 7.8 Hz, 1H), 7.44–7.41(m, 2H), 7.35(s, 1H), 4.36(br s, 4H), 3.93(s, 2H), 3.76(br s, 4H), 3.36(br s, 6H) ppm. MS (ESI, negative ion) m/z: \$93.22 [M – H].

2-{2-[6,7-Bis(2-methoxyethoxy)quinazolin-4-ylthio]thiazol-4-yl}-N-[4-(trifluoromethyl)phenyl]acetamide (15n). The title compound was prepared from 14c and 4-(trifluoromethyl)benzenamine using the procedure previously described for compound 15l and was purified by column chromatography (eluting system: EtOAc) and recrystallization from ethanol. Yield: 334 mg (56%, > 96% HPLC purity). 1 H NMR (400 MHz, DMSO- d_6): δ 10.64(s, 1H), 8.89(s, 1H), 7.83(d, J = 9.2 Hz, 3H), 7.69(d, J = 8.4 Hz, 2H), 7.44(s, 1H), 7.35(s, 1H), 4.36(br s, 4H), 3.94(s, 2H), 3.76(br s, 4H), 3.36(br s, 6H) ppm. MS (ESI, negative ion) m/z: 593.22 [M — H].

2-{2-[6,7-Bis(2-methoxyethoxy)quinazolin-4-ylthio]thiazol-4-yl}-N-(3,5-dimethylphenyl)acetamide (150). The title compound was prepared from 14c and 4-(trifluoromethyl)benzenamine using the procedure previously described for compound 15l and was purified by column chromatography (eluting system: EtOAc) and recrystallization from ethanol. Yield: 355 mg (64%, > 96% HPLC purity). ¹H NMR (400 MHz, DMSO- d_6): δ 10.10(s, 1H), 8.90(s, 1H), 7.79(s, 1H), 7.44(s, 1H), 7.36(s, 1H), 7.24(s, 2H), 6.70(s, 1H), 4.36(br s, 4H), 3.86(s, 2H), 3.76(br s, 4H), 3.36(br s, 6H), 2.23(s, 6H) ppm. MS (ESI, negative ion) m/z: 553.24 [M – H].

N- $\{5$ - $\{6,7$ -Bis(2-methoxyethoxy) quinazolin-4-ylthio]- $\{1,3,4\}$ -thiadiazol-2- $yl\}$ acetamide (17a). A solution of 4-chloro-6,7-bis(2-methoxyethoxy) quinazoline (3, 300 mg, 0.96 mmol), N- $\{5$ -mercapto-[1,3,4] thiadiazol-2-yl) acetamide (16a, 185 mg, 1.05 mmol), and K_2CO_3 (397 mg, 2.88 mmol) in N,N-dimethyl formamide (10 mL) was heated overnight at 100 °C. The reaction mixture was evaporated under reduced pressure. Ice water (20 mL) was added and the white precipitate filtered and washed with ice water (50 mL), which was recrystallized from ethanol to give 17a (205 mg, 46%, 96% HPLC purity) as a white powder. 1H NMR (400 MHz, DMSO- d_6): δ 12.82(s, 1H), 8.86(s, 1H), 7.44(s, 1H), 7.38(s, 1H), 4.38(br s, 4H), 3.78(br s,

4H), 3.37(d, J = 7.6 Hz, 6H), 2.24(s, 3H) ppm. HRMS (m/z): calcd for $C_{18}H_{21}N_5O_5S_2$ [M + H]⁺ 452.1062; found, 452.1068.

N-{5-[6,7-Bis(2-methoxyethoxy)quinazolin-4-ylthio]-[1,3,4]-thiadiazol-2-yl}acrylamide (17b). The title compound was prepared from 3 and *N*-(5-mercapto-[1,3,4]thiadiazol-2-yl)acrylamide (16b) using the procedure previously described for compound 17a and was purified by recrystallization from ethanol. Yield: 144 mg (31%, 96% HPLC purity). ¹H NMR (400 MHz, DMSO- d_6): δ 13.07(s, 1H), 8.89(s, 1H), 7.46(s, 1H), 7.40(s, 1H), 6.60(dd, J = 10.0 Hz, 10.0 Hz, 1H), 6.49(d, J = 16.8 Hz, 1H), 6.02(d, J = 10.0 Hz, 1H), 4.38(br s, 4H), 3.78(br s, 4H), 3.36(d, J = 7.6 Hz, 6H) ppm. HRMS (m/z): calcd for $C_{10}H_{21}N_5O_5S_2$ [M + H]⁺ 464.1062; found, 464.1071.

1-{5-[6,7-Bis(2-methoxyethoxy)quinazolin-4-ylthio]-[1,3,4]-thiadiazol-2-yl}-3-(3-chlorophenyl)urea (17c). The title compound was prepared from 3 and 1-(3-chlorophenyl)-3-(5-mercapto-[1,3,4]-thiadiazol-2-yl)urea (16c) using the procedure previously described for compound 17a and was purified by recrystallization from ethanol. Yield: 440 mg (60%, 96% HPLC purity). ¹H NMR (400 MHz, DMSO- d_6): δ 11.41(s, 1H), 9.34(s, 1H), 8.89 (s, 1H), 7.73(s, 1H), 7.45(s, 1H), 7.38(br s, 3H), 7.14 (s, 1H), 4.38(m, 4H), 3.78(m, 4H), 3.37(d, J = 7.6 Hz, 6H) ppm. MS (ESI, negative ion) m/z: 563.00 [M – H].

1-{5-[6,7-Bis(2-methoxyethoxy)quinazolin-4-ylthio]-[1,3,4]-thiadiazol-2-yl}-3-(3-fluorophenyl)urea (17d). The title compound was prepared from 3 and 1-(3-fluorophenyl)-3-(5-mercapto-[1,3,4]-thiadiazol-2-yl)urea (16d) using the procedure previously described for compound 17a and was purified by recrystallization from ethanol. Yield: 118 mg (46%, 96% HPLC purity). ¹H NMR (400 MHz, DMSO- d_6): δ 11.47(s, 1H), 9.66(s, 1H), 8.89(s, 1H), 7.35–7.51(m, 4H), 7.24(d, J = 8.0 Hz, 1H), 6.90(t, J = 7.6 Hz, 1H), 4.37(t, J = 4.2 Hz, 4H), 3.78(t, J = 6.2 Hz, 4H), 3.37(d, J = 7.2 Hz, 6H) ppm. HRMS (m/z): calcd for $C_{23}H_{23}FN_6O_5S_2$ [M + H]⁺ 547.1234; found, 547.1238.

1-{5-[6,7-Bis(2-methoxyethoxy)quinazolin-4-ylthio]-[1,3,4]-thiadiazol-2-yl}-3-(3-bromophenyl)urea (17e). The title compound was prepared from 3 and 1-(3-bromophenyl)-3-(5-mercapto-[1,3,4]-thiadiazol-2-yl)urea (16e) using the procedure previously described for compound 17a and was purified by recrystallization from ethanol. Yield: 188 mg (45%, 96% HPLC purity). 1 H NMR (400 MHz, DMSO- 1 d6): δ 11.60(s, 1H), 9.84(s, 1H), 8.90(s, 1H), 7.86(s, 1H), 7.20–7.48(m, SH), 4.38(br s, 4H), 3.72(br s, 4H), 3.36(d, 1 d7 = 7.6 Hz, 6H) ppm. HRMS (1 d7): calcd for 1 d7.0433; found, 607.0424.

1-{5-[6,7-Bis(2-methoxyethoxy)quinazolin-4-ylthio]-[1,3,4]-thiadiazol-2-yl}-3-(3-ethynylphenyl)urea (17f). The title compound was prepared from 3 and 1-(3-ethynylphenyl)-3-(5-mercapto-[1,3,4]-thiadiazol-2-yl)urea (16f) using the procedure previously described for compound 17a and was purified by recrystallization from ethanol. Yield: 420 mg (67%, 96% HPLC purity). 1 H NMR (400 MHz, DMSO- d_6): δ 11.78(s, 1H), 9.47(s, 1H), 8.82(s, 1H), 7.80(s, 1H), 7.58(s, 1H), 7.24-7.43(m, 3H), 7.04(d, J = 5.6 Hz, 1H), 4.41(br s, 4H), 4.24(s, 1H), 3.77(br s, 4H), 3.36(d, J = 6.4 Hz, 6H) ppm. HRMS (m/z): calcd for $C_{25}H_{24}N_6O_5S_2$ [M + H] $^+$ 553.1328; found, 553.1024.

1-{5-[6,7-Bis(2-methoxyethoxy)quinazolin-4-ylthio]-[1,3,4]-thiadiazol-2-yl}-3-p-tolylurea (17g). The title compound was prepared from 3 and 1-(5-mercapto-[1,3,4]thiadiazol-2-yl)-3-p-tolylurea (16g) using the procedure previously described for compound 17a and was purified by recrystallization from ethanol. Yield: 90 mg (42%, 96% HPLC purity). 1 H NMR (400 MHz, DMSO- d_6): δ 11.21(s, 1H), 9.05(s, 1H), 8.88(s, 1H), 7.58(s, 1H), 7.45(s, 1H), 7.40(d, J = 7.6 Hz, 2H), 7.15(d, J = 8.4 Hz, 2H), 4.38(br s, 4H), 3.78(br s, 4H), 3.37(d, J = 7.6 Hz, 6H), 2.27(s, 3H) ppm. HRMS (m/z): calcd for $C_{24}H_{26}N_6O_5S_2$ [M + H] $^+$ 543.1484; found, 543.1220.

1-{5-{6,7-Bis(2-methoxyethoxy)}quinazolin-4-ylthio]-[1,3,4]-thiadiazol-2-yl}-3-[4-(trifluoromethyl)phenyl]urea (17h). The title compound was prepared from 3 and 1-(5-mercapto-[1,3,4]thiadiazol-2-yl)-3-[4-(trifluoromethyl)phenyl]urea (16h) using the procedure previously described for compound 17a and was purified by recrystallization from ethanol. Yield: 220 mg (40%, 96% HPLC purity). 1 H NMR (400 MHz, DMSO- 4 6): δ 11.90(s, 1H), 10.89(s, 1H), 8.89(s, 1H), 7.71–7.74(m, 4H), 7.45(s, 1H), 7.39(s, 1H),

4.38(br s, 4H), 3.78(br s, 4H), 3.36(d, J = 7.2 Hz, 6H) ppm. HRMS (m/z): calcd for $C_{24}H_{23}F_3N_6O_5S_2$ [M + Na]⁺ 619.1021; found, 619.1024.

N-{5-[7-(3-Morpholinopropoxy)quinazolin-4-ylthio]-[1,3,4]-thiadiazol-2-yl}acrylamide (**20a**). To a *N,N*-dimethylformamide solution (5 mL) of 3-morpholinopropan-1-ol (2.5 mL, 18.3 mmol) at 0 °C was added 60% NaH (744 mg, 18.6 mmol), and the mixture was stirred for 30 min. To this cold solution was added a *N,N*-dimethylformamide solution (3 mL) of 7-fluoroquinazolin-4(3*H*)-one (18, 1.0 g, 6.1 mmol), and the mixture was heated at 100 °C overnight. The solvent was evaporated, and the residue was purified by ethyl ether to afford desired product 19 (1.43 g, 81%) as a white powder. ¹H NMR (400 MHz, DMSO- d_6): δ 12.11(s, 1H), 8.05(s, 1H), 8.00–8.02(m, 1H), 7.07–7.10(m, 2H), 4.15(t, J = 6.4 Hz, 2H), 3.58(t, J = 4.4 Hz, 4H), 2.43(t, J = 7.2 Hz, 2H), 2.37(br s, 4H), 1.92(m, 2H) ppm.

Phosphorus oxychloride (8.0 mL) was added dropwise to *N,N*-diethylaniline (1.0 mL) with magnetic stirring followed by the addition of 7-(3-morpholinopropoxy)quinazolin-4(3H)-one (19, 1.0 g, 3.45 mmol), and the reaction flask was immersed in a preheated oil bath (70 °C). The temperature was increased to 90 °C and kept at 90 °C for another 3 h. Most of the excess of phosphorus oxychloride was then removed under reduced pressure and the resulting dark oil triturated with toluene (3 × 40 mL). The residue was dissolved in water (20 mL) and extracted with EtOAc (2 × 15 mL). The pH of the aqueous phase was adjusted to 9–10 with Na₂CO₃, and it was extracted with CH₂Cl₂ (3 × 150 mL) and dried over Na₂SO₄, and the organic solvent was removed to afford the product as yellowish oil (900 mg, 84%) without further purification to use for the next step.

A solution of the yellowish oil (300 mg, 0.97 mmol), *N*-(5-mercapto-[1,3,4]thiadiazol-2-yl)acrylamide (16b, 220 mg, 1.18 mmol), and K_2CO_3 (404 mg, 2.93 mmol) in *N*,*N*-dimethylformamide (8 mL) was heated at 100 °C overnight. The reaction mixture was evaporated under reduced pressure. Ice water (20 mL) was added and the white precipitate filtered and washed with ice water (50 mL), which was recrystallized from ethanol to give **20a** (225 mg, 50%, 95% HPLC purity) as a white solid. ¹H NMR (400 MHz, DMSO- d_6): δ 13.02(s, 1H), 8.95(s, 1H), 8.15(d, J = 9.2 Hz, 1H), 6.60(dd, J = 10.0 Hz, 10.0 Hz, 1H), 6.49(dd, J = 1.6 Hz, 1.6 Hz, 1H), 6.02(dd, J = 2.0 Hz, 2.0 Hz, 1H), 4.27(t, J = 6.2 Hz, 2H), 3.59(t, J = 4.4 Hz, 4H), 2.48(br s, 2H), 2.40(br s, 4H), 1.97(m, 2H) ppm. HRMS (m/z): calcd for $C_{20}H_{22}N_6O_3S_2$ [M + H]⁺ 459.1273; found, 459.1270.

1-[5-[7-(3-Morpholinopropoxy)quinazolin-4-ylthio]-[1,3,4]-thiadiazol-2-yl}-3-phenylurea (20b). The title compound was prepared from the intermediate yellowish oil and 1-(5-mercapto-[1,3,4]thiadiazol-2-yl)-3-phenylurea (16i) using the procedure previously described for compound 20a and was purified by recrystallization from ethanol. Yield: 180 mg (70%, 95% HPLC purity). ¹H NMR (400 MHz, DMSO- d_6): δ 11.43(s, 1H), 9.31(s, 1H), 8.94(s, 1H), 8.14(d, J = 9.2 Hz, 1H), 7.53(d, J = 8.0 Hz, 2H), 7.32–7.44(m, 4H), 7.07(t, J = 7.4 Hz, 1H), 4.27(t, J = 6.4 Hz, 2H), 3.59(t, J = 4.4 Hz, 4H), 2.48(br s, 2H), 2.42(br s, 4H), 1.98(m, 2H) ppm. HRMS (m/z): calcd for $C_{24}H_{25}N_7O_3S_2$ [M + H]+ 524.1539; found, 524.1553

1-{5-[7-(3-Morpholinopropoxy)quinazolin-4-ylthio]-[1,3,4]-thiadiazol-2-yl}-3-p-tolylurea (**20c**). The title compound was prepared from the intermediate yellowish oil and 1-(5-mercapto-[1,3,4]thiadiazol-2-yl)-3-p-tolylurea (**16g**) using the procedure previously described for compound **20a** and was purified by recrystallization from ethanol. Yield: 210 mg (59%, 95% HPLC purity). ¹H NMR (400 MHz, DMSO- d_6): δ 11.40(s, 1H), 9.17(s, 1H), 8.95(s, 1H), 8.15(d, J = 9.2 Hz, 1H), 7.40–7.44(m, 4H), 7.15(d, J = 8.4 Hz, 2H), 4.27(t, J = 6.0 Hz, 2H), 3.60(br s, 4H), 2.48(br s, 2H), 2.42(br s, 4H), 2.27(s, 3H), 1.98(m, 2H) ppm. HRMS (m/z): calcd for $C_{25}H_{27}N_7O_3S_2$ [M + H]+ 538.1695; found, 538.1685.

1-(3-Chlorophenyl)-3-(5-[7-(3-morpholinopropoxy)quinazolin-4-ylthio]-[1,3,4]thiadiazol-2-yl}urea (20d). The title compound was prepared from the intermediate yellowish oil and 1-(3-chlorophenyl)-3-(5-mercapto-[1,3,4]thiadiazol-2-yl)urea (16c) using the procedure previously described for compound 20a and was purified by

recrystallization from ethanol. Yield: 355 mg (72%, 95% HPLC purity). 1 H NMR (400 MHz, DMSO- 4 6): δ 11.45(s, 1H), 10.19(s, 1H), 8.95(s, 1H), 8.15(d, 4 J = 8.8 Hz, 1H), 7.77(s, 1H), 7.34–7.44(m, 4H), 7.10(d, 4 J = 7.2 Hz, 1H), 4.27(t, 4 J = 5.8 Hz, 2H), 3.61(br s, 4H), 2.55(br s, 2H), 2.48(br s, 4H), 2.00(m, 2H) ppm. HRMS (4 J): calcd for 4 ClN 4 O₃S₂ [M + H] 4 558.1149; found, 558.1156.

1-(3-Ethynylphenyl)-3-{5-[7-(3-morpholinopropoxy)quinazolin-4-ylthio]-[1,3,4]thiadiazol-2-yl}urea (20e). The title compound was prepared from the intermediate yellowish oil and 1-(3-ethynylphenyl)-3-(5-mercapto-[1,3,4]thiadiazol-2-yl)urea (16f) using the procedure previously described for compound 20a and was purified by recrystallization from ethanol. Yield: 368 mg (77%, 95% HPLC purity). 1 H NMR (400 MHz, DMSO- 1 d): δ 11.85(s, 1H), 9.83(s, 1H), 8.94(s, 1H), 8.14(d, 1 J = 8.8 Hz, 1H), 7.57(d, 1 J = 8.0 Hz, 1H), 7.32–7.43(m, 3H), 7.15(d, 1 J = 7.6 Hz, 2H), 4.26(t, 1 J = 6.0 Hz, 2H), 4.19(s, 1H), 3.59(br s, 4H), 2.47(br s, 2H), 2.41(br s, 4H), 1.97(m, 2H) ppm. HRMS (1 Mz): calcd for 1 C₂₆H₂₅N₇O₃S₂ [1 M + 1 M + 548.1539; found, 548.1553.

Kinase Inhibitory Assays. The kinase inhibitory assays were performed according to the KinaseProfiler assay protocols of Upstate Biotechnology (Millipore).

Cell Culture. Unless specifically mentioned, the cell lines were obtained from the American Type Culture Collection (Manassas, VA, USA). Cells were grown in RPMI 1640 or DMEM culture medium containing 10% fetal bovine serum (v/v) in 5% CO_2 at 37 °C, except for MV4-11 cells, which were cultured in IMDM culture medium.

Cell Viability Assays. The viability of cells was determined using the MTT assay method. The leukemia cells were seeded in a 96-well plate at $1-4 \times 10^4$ cells per well, and an equal volume of medium containing increasing concentrations of inhibitors was added to each well. At the end of the incubation period (72 h at 37 $^{\circ}\text{C}$), 20 μL of 5 mg/mL MTT reagent was added per well for 2-4 h of incubation, and 50 μ L of 20% acidified SDS per well was used to lyse the cells. The other cell lines were seeded in 96-well plates at a density of $2-5 \times 10^3$ cells/well for 24 h followed by replacement of the medium with serial dilutions of inhibitors in culture medium. Following a 72-h incubation, the MTT reagent was added for a 2-4-h incubation, and 100% DMSO was used to dissolve the cells. Finally, the light absorption (OD) of the dissolved cells was measured at 570 nm using a SpectraMAX M5 microplate spectrophotometer (Molecular Devices). All experiments were performed in triplicate. The percentage of viability was calculated and compared with that of the control cells treated with DMSO (0.1%).

Immunoprecipitation and Western Blot Assays. Immunoprecipitation and immunoblotting were performed for the analysis of FLT3 autophosphorylation. After treatment with a series of concentrations of 20c for 24 h at 37 °C, MV4-11 cells were harvested, washed in ice-cold PBS, and lysed with RIPA buffer (10 mM Tris-HCl (pH 7.8), 1% NP40, 0.15 M NaCl, 1 mM EDTA, 10 μM aprotinin, 1 mM NaF, and 1 mM Na₃VO₄). Samples were incubated overnight at 4 $^{\circ}\text{C}$ with the anti-FLT3 antibody, and immune complexes were precipitated with protein A agarose (Roche Applied Science) at 4 °C. The precipitated samples were subjected to immunoblot analysis to detect FLT3 phosphorylation by probing with the antiphosphotyrosine antibody (Upstate Biotechnology, Lake Placid, NY). Total FLT3 was measured with an anti-FLT3 antibody after the PVDF membrane had been incubated with stripping buffer. STAT5 and Erk1/2 phosphorylation was detected through immunoblot analysis. Briefly, after 20 h of 20c treatment, MV4-11 cells were harvested and lysed with RIPA buffer. Samples were analyzed by immunoblotting as outlined above using antiphospho-STAT5, anti-STAT5, anti-p44/42 MAPK, and antiphospho-p44/42 MAPK antibodies.

In Vivo Models. MV4-11 cells were harvested during the exponential-growth phase, washed twice with serum-free medium, and resuspended at the concentration of 1×10^8 /mL. One hundred microliters of cell suspensions was injected subcutaneously into the hind flank of each female NOD-SCID mouse (6–7 weeks old). The tumors were allowed to grow to $300-500 \text{ mm}^3$ at which point the mice were randomized into 4 groups (6 mice for each group) and dosed with 20c (20, 40, or 100 mg/kg/d) or vehicle. The compounds

were dissolved in 25% (v/v) PEG400 plus 5% DMSO and administered intraperitoneally at a dose of 5 mL/kg. Tumor growth was measured every 3 days using Vernier calipers for the duration of the treatment. The volume was calculated as follows: tumor volume = $a \times b^2/2$ (a, long diameter; b, short diameter).

Histopathology and IHC. NOD-SCID mice bearing tumors or having undergone bone marrow engraftment were treated with 20c at a dose of 20 mg/kg/d (ip). At the indicated time after dosing, individual mice were sacrificed. The tumors or femoral bones were fixed with formalin and embedded in paraffin (femoral bones were decalcified). Sections measuring 4–8 μ m in thickness were prepared for histological and immunohistochemical analysis. Proliferation was detected using immunostaining with the Ki67 antibody (Thermo Fisher Scientific, Fremont, CA). Apoptosis was determined using transferase-mediated dUTP nick-end labeling (TUNEL) and staining (Roche Applied Science). Finally, images were captured with an Olympus digital camera attached to a light microscope.

Pharmacokinetic Analysis. Male Sprague—Dawley rats (200—250 g) were used and randomly divided into two groups (n=3 in each group). A catheter was surgically placed into the femoral vein for collection of blood samples. Rats were fasted overnight before dosing. Compounds **20c** and **20e** were administered intraperitoneally (ip) at a dose of 40 mg/kg. Plasma concentrations of each compound were determined by LC-MS/MS (a 3200 QTRAP system, Applied Biosystems/MDS Sciex).

ASSOCIATED CONTENT

S Supporting Information

IC₅₀ values of **1** against human FLT3 and pharmacokinetic properties of **20c** and **20e**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Tel: +86-28-85164063. Fax: +86-28-85164060. E-mail: yangsy@scu.edu.cn.

Author Contributions

These authors contributed equally to this work.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (81172987), the National S&T Major Project (2012ZX09102-101-002), and the 863 Hi-Tech Program (2012AA020301 and 2012AA020308).

ABBREVIATIONS USED

FLT3, FMS-like tyrosine kinase 3; STAT5, signal transducer and activator of transcription 5; AML, acute myeloid leukemia; SAR, structure—activity relationship; MAPK, mitogen-activated protein kinase; PI3K, phosphatidylinositol 3-kinase; ITD, internal tandem duplications; TLC, thin layer chromatography; HOBT, 1-hydroxybenzotriazole; EDCI, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride; DIEA, *N,N*-diisopropylethylamine

REFERENCES

- (1) Lyman, S. D.; James, L.; Zappone, J.; Sleath, P. R.; Beckmann, M. P.; Bird, T. Characterization of the protein encoded by the flt3 (flk2) receptor-like tyrosine kinase gene. *Oncogene* **1993**, *8*, 815–822.
- (2) Rosnet, O.; Schiff, C.; Pebusque, M. J.; Marchetto, S.; Tonnelle, C.; Toiron, Y.; Birg, F.; Birnbaum, D. Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. *Blood* **1993**, *82*, 1110–1119.

- (3) Lyman, S. D. Biology of Xt3 ligand and receptor. *Int. J. Hematol.* **1995**, *62*, *63*–73.
- (4) Gilliland, D. G.; Griffin, J. D. The roles of FLT3 in hematopoiesis and leukemia. *Blood* **2002**, *100*, 1532–1542.
- (5) Levis, M.; Small, D. FLT3 tyrosine kinase inhibitors. *Int. J. Hematol.* **2005**, 82, 100–107.
- (6) Cloos, J.; Goemans, B. F.; Hess, C. J. Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. *Leukemia* **2006**, *20*, 1217–1220.
- (7) Gale, R. E.; Green, C.; Allen, C. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. *Blood* **2008**, *111*, 2776–2784.
- (8) Meshinchi, S.; Alonzo, T. A.; Stirewalt, D. L. Clinical implications of FLT3 mutations in pediatric AML. *Blood* **2006**, *108*, 3654–3661.
- (9) Kiyoi, H.; Yanada, M.; Ozekia, K. Clinical significance of FLT3 in leukemia. *Int. J. Hematol.* **2005**, 82, 85–92.
- (10) Meshinchi, S.; Alonzo, T. A.; Stirewalt, D. L. Clinical implications of FLT3 mutations in pediatric AML. *Blood* **2006**, *108*, 3654–366.
- (11) Schlenk, R. F.; Dohner, K.; Krauter, J. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. *N. Engl. J. Med.* **2008**, 358, 1909–1918.
- (12) Giles, F. J.; Stopeck, A. T.; Sliverman, L. R.; Lancet, J. E.; Cooper, M. A.; Hannah, A. L.; Cherrington, J. M.; O'Farrell, A. M.; Yuen, H. A.; Louie, S. G.; Hong, W.; Cortes, J. E.; Verstovsek, S.; Albitar, M.; O'Brien, S. M.; Kantarjian, H. M.; Karp, J. E. SUS416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. *Blood* 2003, 102, 795–801.
- (13) O'Farrell, A. M.; Abrams, T. J.; Yuen, H. A.; Ngai, T. J.; Louie, S. G.; Yee, K. W. H.; Wong, L. M.; Hong, W.; Lee, L. B.; Town, A.; Smolich, B. D.; Manning, W. C.; Murray, L. J.; Heinrich, M. C.; Cherrington, J. M. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. *Blood* **2003**, *101*, 3597–3605.
- (14) Menezes, D. E. L. d.; Peng, J.; Garrett, E. N.; Louie, S. G.; Lee, S. H.; Wiesmann, M.; Tang, Y.; Shephard, L.; Goldbeck, C.; Oei, Y.; Ye, H.; Aukerman, S. L.; Heise, C. CHIR-258: a potent inhibitor of FLT3 kinase in experimental tumor xenograft models of human acute myelogenous leukemia. *Clin. Cancer Res.* 2005, 11, 5281–5291.
- (15) Stone, R. M.; De Angelo, J.; Galinsky, I.; Estey, E.; Klimek, V.; Grandin, W.; Lebwohl, D.; Cohen, P.; Fox, E.; Neuberg, D.; Clark, J.; Gilliand, D. G.; Griffin, J. D. PKC 412 Flt3 inhibitor therapy in AML: results of a phase II trial. *Ann. Hematol.* **2004**, 83 (Suppl 1), S80–90.
- (16) Smith, B. D.; Levis, M.; Beran, M.; Giles, F.; Kantarjian, H.; Berg, K.; Murphy, K. M.; Dauses, T.; Allebach, J.; Small, D. Singleagent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. *Blood* **2004**, *103*, 3669–3676.
- (17) DeAngelo, D. J.; Stone, R. M.; Heaney, M. L.; Nimer, S. D.; Paquette, R. L.; Klisovic, R. B.; Caligiuri, M. A.; Cooper, M. R. J.; Lecerf, M.; Karol, M. D.; Sheng, S.; Holford, N.; Curtin, P. T.; Druker, B. J.; Heinrich, M. C. Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. *Blood* **2006**, *108*, 3674—3681.
- (18) Zhang, W.; Konopleva, M.; Shi, Y. X.; McQueen, T.; Harris, D.; Ling, X.; Estrov, Z.; Quintás-Cardama, A.; Small, D.; Cortes, J.; Andreeff, M. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. *J. Natl. Cancer Inst.* **2008**, *100*, 184–198.
- (19) Shiotsu, Y.; Kiyoi, H.; Ishikawa, Y.; Tanizaki, R.; Shimizu, M.; Umehara, H.; Ishii, K.; Mori, Y.; Ozeki, K.; Minami, Y.; Abe, A.; Maeda, H.; Akiyama, T.; Kanda, Y.; Sato, Y.; Akinaga, S.; Naoe, T. KW-2449, a novel multikinase inhibitor, suppresses the growth of leukemia cells with FLT3 mutations or T31SI-mutated BCR/ABL translocation. *Blood* **2009**, *114*, 1607–1617.
- (20) Cortes, J.; Ghirdaladze, D.; Foran, J. M.; DeVetten, M. P.; Zodelava, M.; Levis, M. J.; Padre, N. M.; James, J.; Zarrinkar, P. P.;

- Corringham, R. Phase 1 AML study of AC220, a potent and selective second generation FLT3 receptor tyrosine kinase inhibitor. *Blood* **2008**, *112*, *767*.
- (21) Pratz, K. W.; Cortes, J.; Roboz, G. J.; Rao, N.; Arowojolu, O.; Stine, A.; Shiotsu, Y.; Shudo, A.; Akinaga, S.; Small, D.; Karp, J. E.; Levis, M. A pharmacodynamic study of the FLT3 inhibitor KW-2449 yields insight into the basis for clinical response. *Blood* **2009**, *113*, 3938–3946.
- (22) DeAngelo, D. J.; Stone, R. M.; Heaney, M. L.; Nimer, S. D.; Paquette, R. L.; Klisovic, R. B.; Caligiuri, M. A.; Cooper, M. R. J.; Lecerf, M.; Karol, M. D.; Sheng, S.; Holford, N.; Curtin, P. T.; Druker, B. J.; Heinrich, M. C. Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. *Blood* **2006**, *108*, 3674–3681.
- (23) Knapper, S.; Burnett, A. K.; Littlewood, T.; Kell, W. J.; Agrawal, S.; Chopra, R.; Clark, R.; Levis, M. J.; Small, D. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. *Blood* **2006**, *108*, 3262–3270.
- (24) Li, W. W.; Chen, J. J.; Zheng, R. L.; Zhang, W. Q.; Cao, Z. X.; Yang, L. L.; Qing, X. Y.; Zhou, L. X.; Yang, L.; Yu, L. D.; Chen, L. J.; Wei, Y. Q.; Yang, S. Y. Taking quinazoline as a general support-Nog to design potent and selective kinase inhibitors: application to FMS-like tyrosine kinase 3. *ChemMedChem* **2010**, *5*, 513–516.
- (25) Duffel, M. W.; Ing, I. S.; Segarra, T. M.; Dixson, J. A.; Barfknecht, C. F.; Schoenwald, R. D. *N*-Substituted sulfonamide carbonic anhydrase inhibitors with topical effects on intraocular pressure. *J. Med. Chem.* **1986**, *29*, 1488–1494.
- (26) Zhong, P.; Guo, M. P. Stereo-selective synthesis of (Z)-ketene selenothioacetals via hydrozirconation of alkylacetylenic selenides. *J. Chem. Res. Synopses* **1995**, *9*, 370–371.
- (27) Almajan, G. L.; Innocenti, A.; Puccetti, L.; Manole, G.; Barbuceanu, S.; Saramet, I.; Scozzafava, A.; Supuran, C. T. Carbonic anhydrase inhibitors. Inhibition of the cytosolic and tumor-associated carbonic anhydrase isozymes I, II, and IX with a series of 1,3,4-thiadiazole- and 1,2,4-triazole-thiols. *Bioorg. Med. Chem. Lett.* 2005, 15, 2347–2352.
- (28) Kim, K. S.; Kimball, S. D.; Misra, R. N.; Rawlins, D. B.; Hunt, J. T.; Xiao, H. Y.; Lu, S.; Qian, L.; Han, W. C.; Shan, W.; Mitt, T.; Cai, Z. W.; Poss, M. A.; Zhu, H.; Sack, J. S.; Tokarski, J. S.; Chang, C. Y.; Pavletich, N.; Kamath, A.; Humphreys, W. G.; Marathe, P.; Bursuker, I.; Kellar, K. A.; Roongta, U.; Batorsky, R.; Mulheron, J. G.; Bol, D.; Fairchild, C. R.; Lee, F. Y.; Webster, K. R. Discovery of aminothiazole inhibitors of cyclin-dependent kinase 2: synthesis, X-ray crystallographic analysis, and biological activities. *J. Med. Chem.* 2002, 45, 3905–3927.
- (29) Smith, N. R.; James, N. H.; Oakley, I.; Wainwright, A.; Copley, C.; Kendrew, J.; Womersley, L. M.; Jürgensmeier, J. M.; Wedge, S. R.; Barry, S. T. Acute pharmacodynamic and antivascular effects of the vascular endothelial growth factor signaling inhibitor AZD2171 in Calu-6 human lung tumor xenografts. *Mol. Cancer. Ther.* **2007**, *6*, 2198–2208.
- (30) Brave, S. R.; Ratcliffe, K.; Wilson, Z.; James, N. H.; Ashton, S.; Wainwright, A.; Kendrew, J.; Dudley, P.; Broadbent, N.; Sproat, G.; Taylor, S.; Barnes, C.; Silva, J. C.; Farnsworth, C. L.; Hennequin, L.; Ogilvie, D. J.; Jürgensmeier, J. M.; Shibuya, M.; Wedge, S. R.; Barry, S. T. Assessing the activity of cediranib, a VEGFR-2/3 tyrosine kinase inhibitor, against VEGFR-1 and members of the structurally related PDGFR family. *Mol. Cancer. Ther.* **2011**, *10*, 861–873.
- (31) Pandey, A.; Volkots, D. L.; Seroogy, J. M.; Rose, J. W.; Yu, J. C.; Lambing, J. L.; Hutchaleelaha, A.; Hollenbach, S. J.; Abe, K.; Giese, N. A.; Scarborough, R. M. Identification of orally active, potent, and selective 4-piperazinylquinazolines as antagonists of the platelet-derived growth factor receptor tyrosine kinase family. *J. Med. Chem.* **2002**, *45*, 3772–3793.
- (32) Mortlock, A. A.; Foote, K. M.; Heron, N. M.; Jung, F. H.; Pasquet, G.; Lohmann, J. J. M.; Warin, N.; Renaud, F.; Savi, C. D.;

- Roberts, N. J.; Johnson, T.; Dousson, C. B.; Hill, G. B.; Perkins, D.; Hatter, G.; Wilkinson, R. W.; Wedge, S. R.; Heaton, S. P.; Odedra, R.; Keen, N. J.; Crafter, C.; Brown, E.; Thompson, K.; Brightwell, S.; Khatri, L.; Brady, M. C.; Kearney, S.; McKillop, D.; Rhead, S.; Parry, T.; Green, S. Discovery, synthesis, and in vivo activity of a new class of pyrazoloquinazolines as selective inhibitors of Aurora B kinase. *J. Med. Chem.* **2007**, *50*, 2213–2224.
- (33) Bemis, G. W.; Harbeson, S. L.; Ledeboer, M. Inhibitors of JAK protein kinase. US 20040038992 A120040226.